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A Solvable Problem in Poisson Statistics 

Y.  P o m e a u  ~ 

Received January 8, 1980 

Among the wide field of interest of Pierre Rrsibois, the exact solution of various 
problems in nonequilibrium statistical mechanics took a large place. Recently he 
used (1> the model of hard rods moving on a line to study some properties in 
kinetic theory. As a tribute to his memory, I present in this paper the derivation 
of the exact solution of a problem of Poisson noise. 
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1. I N T R O D U C T I O N  

One knows (2) the solution (i.e., any autocorrelat ion funct ion can be com- 
puted in a finite form) of the following class of problems: 

d z / d t  = A[ F( t )  ]z (1) 

where z is a p - componen t  real vector, A a p • p matrix which depends on a 
real parameter  F, and  where F(t) is a Poisson stochastic process: F(t) takes 
a finite number  of values (actually I shall limit myself to two values, which 
I shall call either a / b  or + / -  ) and F turns f rom a to b (or + to - )  at 
r andom with probabil i ty ?~ dt per time interval dt. 

I shall study a (one-dimensional) generalization of (1) to nonlinear 
situations. The motivat ion of this work is not  purely academic.  Actually the 
dynamics  of typical parameters  in fluid dynamics  near a certain class of 
bifurcations obey (3) a gradient flow equation of the general form 

d x / a t  = (2) 
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and near the bifurcation, ~ takes the form 

~(X) ~- -- ex2/2 + X4/4 + O(x 6) (3) 

In the subcritical region, e < 0, the equilibrium x = 0 is stable and locally 
attracting, and e > 0 defines the supercritical domain where x = 0 is 
unstable, the stable equilibria x = +_ (2e) 1/2 + O(e) 3/2 being locally attract- 
ing. 

If one adds to (2) a Langevin fluctuating force, i.e., a white Gaussian 
noise f ( t )  such that ( f (q) f ( t2))  = A 3(tl - tz), one knows (4) that the distri- 
bution of the fluctuations of x is given by 

P(x)  = Z - l  exp[ - +(x ) /2A  1 

where Z -  l is a normalization constant. With the choice (3) for +(x), this 
probability distribution is perfectly continuous with respect to e. This is due 
in particular to the Gaussian distribution of the fluctuations of the Lange- 
vin force. There is always a [small, as e x p ( - e / 2 A )  as e becomes large] 
probability that a large fluctuation of this force allows the system to jump 
from the vicinity of a local minimum of + to another minimum. The 
transition which exists in the absence of fluctuations for the system (2)-(3) 
is smeared out by this Langevin force. If, on the contrary, one limits the 
amplitude of the fluctuations of the external noise at a constant level, e 
independent, the transition between two minima becomes impossible when 
the potential barrier becomes too large (as e increases). Perhaps this remark 
is of some importance for the case of metastable thermodynamic situations, 
for it is unclear that large-amplitude fluctuations are Gaussian. Thus the 
two minima of ~b do not communicate any more if the level of the external 
noise is bounded, as is the case for a Poisson noise. The case where the 
external random force takes two values following a Poisson law, + being 
fixed, is a particular case in a large class of one-dimensional problems of 
the following general form: let x(t)  obey an equation of the form 

dx / dt = eg(x, r (  t)) 

where F is a Poisson process taking two values such that ~ has two possible 
forms 0 + 'and  ~_ .  An elementary extension of the calculations made by 
Van Kampen (5) shows that, if P+ (x, t)dx is the probability that at time t, 
has the form q~+, x being in [x,x + dx], then these two functions obey the 
coupled system 

P+(x,t)+ a a--t -~x (~+ P+ ) = X(P_ - P+ ) (4a) 

(x, t) + ~x  (r P -  ) = k(P+ - P -  ) (4b) P_ 
~t 
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where ?~ is the turning rate of the Poisson process and ~+ = - ( d / d x ) .  

(~_+(x)). 

, E Q U I L I B R I U M  D I S T R I B U T I O N  

In what follows I shall first solve the system (4) in the stationary (or 

where 

and 

1 O ( C r  O 
2 0x ~+ ~ _ _  + ~xx (AX~ + ~tX~ = 0 (5) 

and 

++ (x)~_ (x) 
A(x) = e~+ (x) + ~_ (x) 

Due to the physical origin of the problem, I assume that the support of 
p0+ and pO and of X ~ is made of one of the segments [ x + , x _ ]  (or 
eventually [ x  ,x+ ]) such that x+ and x_ are stable equilibria of if+ and 
~p_ (or zeros of the velocity fields ~+ and ~,_ ) and that no other stable 
equilibrium of ~+ or ~p_ lies in this interval. During its motion the particle 
will move toward x+ or x_ ,  depending upon whether the potential has the 
form ~p+ or ~_,  but it will never pass these stable equilibria. These 
equilibria are indeed zeros of A(x). Due to (5), X ~ and A must vanish 
together at x_ and x+,  which implies C = 0, and the general solution of (5) 
with C = 0 is 

i ;: l A(x) exp - x+ A(y) 

pO+_= -T- - - ~  exp x+ 

equilibrium) case. 
We are thus looking for a solution of 

---a ( + + e ~ 1 7 6  ' ~  
dx  - + 

d (,_co )=X( e~  - e  ~ 

Adding these two equations, one gets 

q,+ pO+ +q~_ pO = C, C an integration constant 

Putting X ~ = p0+ _ pO, one has 

1,o = ( c  -r- x~ )/(++ +0_ ) 
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It  is easy to see that, with a convenient choice of the sign of the normalizing 
factor K, pO are indeed two positive functions in the interval [x+ , x_  ]: by 
assumption, ~+ are two velocity fields without other zeros than x+ in 
[x+,x_]. 

The choice of K is determined by the normalization condition 

fxX- x [ + (x) ] --1 
+ 

o r  

= f ~-dx cO_ -cO+ K-J !.~+ q,,~+ 
The form of this condition leads us to consider the convergence of the 

normalizing integral near the zeros of q,+ and ~_ (and of A). The 
discussion made below for x+ extends in an obvious way to the other cases. 

In the generic case of a parabolic minimum of the potential, one has 

eO+x~x+-a(x-x+) with a > O  

and 

Thus 

A = - , ~ ( x - x + )  
X - - ~ X +  

0-0+exp[- ] o x-x  
fx Xdy 

As h/a > 0, the normalization integral converges at x = x + ] + .  
If ~+ has a power law behavior near x = x+ I+, 

Thus 

eOx~x+ -o, l x -  x+l p, ~,0>0 

A ~_ - ~ L x - x + l  p 
X - - ~ X  + 

and 

q~+ q~_ \ .x+ 

1 
o<~-~1 ~1~-  x . l  ~ 
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In all these cases, the normalization integral converges. In a particular 
case one may obtain a simple explicit solution: 

~ _ + ( x ) = - x + l ,  x =7-1 ,  A -  l - x 2  
- -  -+ 2 X  

2 x K  X o -  
-X  ] 1 (1 - x 2) 

exp 
1 - x 2 _/1)2 l-X 

pO_+ = -7- K_+_ 1 (1 - x2) x 

with 

1 , X ) -  F(1/2)F(X) 
K - '  = f ] 1 2 d x ( 1 -  x2) x - ' =  2 B ( ~  F(A + 1/2) 

3. TRANSITION IN THE EQUILIBRIUM DISTRIBUTION 

Let us look at the change in the equilibrium distribution near a 
transition. We assume in this section that 0+ or 0 -  (say r ) depends 
continuously on a parameter and that, when this parameter crosses a 
critical value, a new equilibrium for ~+ appears in the interval ] x + , x _  [. 
This bifurcation is schematically pictured in the Fig. 1. It is obvious from 
this figure that after the bifurcation, the motion stays in the interval 
[ x + , x  ], x+ being the new equilibrium of t)+. 

In the vicinity of this new equilibrium, the generic form of q}+ (x) is 
ep+ ( x )  = n - f l ( x  - x s )  z, with fi > 0. For n = 0, x s is a metastable equilib- 
rium of ~k+. For n > 0, two equilibria appear in the vicinity of x s, at the 

! 
zeros of ~+, i.e., at x = x s +_ ( n / f i )  I/2. Of course the point x+ - - x  s + 
( n / f i )  x/2 is the new stable equilibrium, although x s - ( n / f l )  1/2 is unstable. 

For n > 0, the support of the equilibrium distribution is [x'+, Xs]. Let 
us look at the transition to this situation. For a slightly negative 7, the 
function A varies rapidly in a region of extent ([n]/fl) 1/2 around x s.  In this 
region 

A - -  q~+ IT[ q" ~ ( x  - Xs )  2 

and the corresponding contribution to 

Ox 
;6 

is 

X s  
dyX _ X (  dy )wr 

A - 3, x, lnt + / 3 ( y  - x , )  2 - 
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Fig. 1. Deformation of the potential ~+ (x) near a bifurcation. In (a) a single equilibrium 
exists, in (b), that is just at the bifurcation, a metastable equilibrium exists that produces in (c) 
a new equilibrium position in x+ .  

Thus, as 7/--)0_, the amplitude of X ~ (and of pO)  in the region 
x +  < x < x s is of order e x p [ - ~ T r / ( f l [ ~ [ )  1/2] with respect to its value in the 
region x s < x < x _ .  Of course this estimation is not valid in the transition 
region of width ( [ ~ l /  f l )  1/2 around x s .  

The reason for this situation is as follows: as ~ goes to 0_,  x s is very 
near to being a metastable point, and the trajectories running from x to 
x+ take a very long time to run over x s when the potential is ~D +, although 
when the potential is in the state ~b_ the particle runs at a finite velocity 
over x s toward x_ ,  since x s is not at all a particular point for ~D_. 

In the limit situation (v/= 0), the support of the equilibrium measure is 
[x'+ = Xs ,  X ] and the density of probability is exponentially small, as 
exp [ -  ~ / f l ( x  - X s )  ] near Xs[ +.  

4. NONEQUILIBRIUM PROBABILITY DISTRIBUTION 

It does not seem possible to get in a closed form the solution of the 
relaxation problem [that is, the solution of (4) at time t, for given initial 
conditions]. I shall give in what follows only partial results on this problem. 
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Let s be an eigenvalue o f  the relaxation problem and let Q+ be the 
corresponding pair of eigenfunctions. They satisfy the system of coupled 
equations 

sQ+ +ax(~ + Q+) = X(Q_ - Q+) (6a) 

sQ_ + ~ ( ~ _  Q_ )=X(  Q+ - Q _ )  (6b) 

It is easy to obtain from (6) a single equation for either Q+ or Q_.  I 
shall, however, try to respect as much as possible the + / -  symmetry, 
keeping clear at each step of the calculation the existence of an elementary 
solution of (6) with s = 0. 

Taking as new functions q+ (x) = e-~(X)Q+ (x), a(x) arbitrary (for the 
moment), one has 

(~ + x + ~,+ ~)q_+ + ~x (r q-+ ) = Xq~ 

where (.)~ = (3/Ox)(.). 
Putting M = q~+ q+ + ~ _  q_,  L = 0+ q+ - 0 -  q - ,  so that q_+ = (M_+ 

L)/2e~+_, one has 

( M ~x + + 2~ § ~ _ (~' - - q' § ) + Mx -- 0 (7a) 

( / Iox s 1 1 + L + ( + 0 
( X + 2 ) M  0+ q~_ (7b) 

where A = (~+ + 0 - ) / ~ +  q ' - ,  as before. 
By a convenient choice of a (and thus of c~x) one may either eliminate 

the term proportional to M in (7a) or to L in (7b), allowing one to find L 
(or M)  as a function of M x (or L~). Choosing the first alternative, i.e., 
e~ x = - s A / 2 ,  I get 

2q~+ 0 -  
L -  Mx s(~,+ -~ ,_)  

and 

~ (  s 1 1 + + - -  - -0  (8) 

The next step consists in eliminating the first-order derivative M~ in 
(8). This can be done in many different ways. I follow a method making 
always explicit the existence of a solution with s = 0. 

Putting 

q~+ ~ -  XA 
a ( x ) -  O+-ep_ and b ( x ) -  q~+ -ep_ 
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I introduce a new variable X ( x )  such that 

Xx(a ~ + b) + aXx~ = 0 

o r  

(9) 

, exp( (10, 
It is remarkable that X does not depend on s. It is legitimate to take X as a 
new variable instead of x, since X is a strictly increasing function of x. 
After substitution of this variable in (8), one gets 

Mxx + k ( s ) U ( X ) g  = 0 (1 i) 

where k(s)  = ( s /2  + X)s/2, X being defined implicitly as a function of x by 
-q~ ~2/rX2q,2 (10) and where U ( X ) =  - ( 0 +  _ ,  ~ ~ +e~2_). On this (final) form I 

make the following remarks: 
(i) U(X)  is infinite at X_+, images of x• in the variable X [X being 

defined by (10), X+_ =--X(x+_)]. If one assumes that M is in L 2 [ X + , X  ] 
(this is not at all a necessary property, the square of a probability distribu- 
tion has no physical meaning), the operator ~2x2 is negative as - U(X),  thus 
k(s)  must be real negative, and either s is real negative with -2X ~< s ~< 0 
or s has an imaginary part and is of the form s = - h  + is", s" real. 

(ii) The eigenfunctions of (11) are defined by pairs: if s is an eigen- 
value of (6a), ( - s -  2X) is an eigenvalue, too, as the substitution s 
( -  s - 2X) leaves k(s)  invariant. If s has an imaginary part, the conjugated 
eigenvalue is precisely given by this substitution. 

As an application, consider the equilibrium solution, for which s = 0. 
From the above substitutions we deduce the existence of a relaxation 
eigenfunction with the eigenvalue -2X. It has the form 

where M ~ and L ~ are the equilibrium values of M and L. This can be 
verified by elementary substitutions in (7) with s = -2X and % = -XA. 

(iii) It is difficult to find directly the behavior of the relaxation rate in 
the vicinity of a "transition" (in the sense of Section 3). However, a simple 
argument shows that near a transition the first "excited" mode of (11) has 
an eigenfrequency which vanishes exponentially. 

Near a transition (as defined in Section 3), a quasimetastable point for 
q~+ (for instance) appears in the interval [ x + , x _  ], say at x s. A very large 
relaxation time appears under the same conditions. This is approximately 
the time needed for the particle to move from x_ to x+ across x s. A rough 
estimate of this time is given by the ratio of the probabilities of presence (at 
equilibrium) in [Xs,X+] to the one in [x_,Xs]. Near the transition, this 
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ratio is of order exp [ -~Tr / ( f i  i•l) 1/2] (/~, 7/have the same definitions as in 
Section 3). Thus, it is natural to conclude that near ~/= 0_ one of the 
eigenvalues of (6) goes to zero as e x p [ - ~ r / (  fl1~7])1/2]. Such a result could 
be likely derived from a Kramers-like analysis of the relaxation problem. 

For the symmetric double-well potential of the introduction, the onset 
of transition manifests itself by a breaking of the symmetry x / -  x .  The 
typical correlation time diverges at this transition as exp(-C/[~11/2) .  

5. C O N C L U S I O N  

This solution of a problem of one-dimensional Poisson statistics has its 
own interest. A natural question arises about the possibility of an extension 
to higher dimensions. This is an extremely difficult problem; it is even 
unclear if the resulting equilibrium distribution is smooth or some more or 
less pathological function, despite the fact that the equations equivalent to 
(4) can be written at once for any kind of velocity field in any number  of 
dimensions. One can see again on this model how much the existence of 
solutions is often limited to one-dimensional problems, which are known to 
be rather misleading sometimes! 

R E F E R E N C E S  

I. P. R~sibois, Physica 90A:273 (1978). 
2. R.C. Bourret, U. Frisch, and A. Pouquet, Physica 65:303 (1973); N. G. Van Kampen, 

Physiea 70:222 (1973). 
3. J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, and P. BergS, J. Phys. (Paris) 39:725 

(1978). 
4. R.L. Stratonovitch, Topics in the Theory of Random Noise, Vol. 1I (New York, 1967). 
5. N.G. van Kampen, Phys. Reports, Phys. Lett. C 24:271 (1976). 


